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Abstract We extend the concept that life is an informational phenomenon, at every level of organisation,10

from molecules to the global ecological system. According to this thesis: (a) living is information process-11

ing, in which memory is maintained by both molecular states and ecological states as well as the more12

obvious nucleic acid coding; (b) this information processing has one overall function - to perpetuate itself;13

and (c) the processing method is filtration (cognition) of, and synthesis of, information at lower levels to14

appear at higher levels in complex systems (emergence). We show how information patterns, are united by15

the creation of mutual context, generating persistent consequences, to result in ‘functional information’.16

This constructive process forms arbitrarily large complexes of information, the combined effects of which17

include the functions of life. Molecules and simple organisms have already been measured in terms of func-18

tional information content; we show how quantification may be extended to each level of organisation up19

to the ecological. In terms of a computer analogy, life is both the data and the program and its biochemical20

structure is the way the information is embodied. This idea supports the seamless integration of life at all21

scales with the physical universe. The innovation reported here is essentially to integrate these ideas, bas-22

ing information on the ‘general definition’ of information, rather than simply the statistics of information,23

thereby explaining how functional information operates throughout life.24
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1 Introduction: what is life?26

The question ‘what is life’ is one of the oldest in philosophy, deeply mysterious and still fascinating. Not27

only is it fundamental to biology, it has challenged and extended physics, metaphysics, the human sciences28

of medicine and psychology, the arts and even spiritual thinking. But efforts to answer the question have29

generally been constrained by disciplinary boundaries or within an organizational scale of life, leading to30

several apparently separate answers. The aim of this paper is to unite these by considering life as a whole,31

simultaneously at every organizational level (from molecule to global ecosystem). This integration uses the32

concept of life as information processing for a unifying principle.33

During the second half of the 20th century, the paradigm that ‘life is chemistry’ (Kornberg, 1991) was34

especially influential in understanding living processes at the sub-cellular level. As increasingly complicated35

networks of molecular interactions were recognised, the need for a formal understanding of their organi-36

zational structures developed into systems biology, which now extends beyond the cell (Kohl et al., 2010).37

At the same time, but largely unrelated, theoretical ecology developed into a form of cybernetics: the study38

of self-regulating systems, moving chemical substances through networks of populations and communities.39

The complex networks of the cell’s biochemistry were paralleled by complex webs of interactions among40

organisms: the elaborate complexities of the ‘-omics’ were matched by those of biodiversity as we realised41

that the estimated 15 million species (8.7 million eukaryotic (Mora et al., 2011) plus 6 million prokaryotic42

(Curtis et al., 2002)) are all connected to one-another in networks of community interactions. Observing43

that these complex networks may be two manifestations of a common feature of life, we now propose a44

unifying model in which interactions among molecules, cells, organisms and populations all amount to in-45

formation processing through a hierarchy of functional networks - molecules in cells, cells in organisms and46

organisms in communities, which compose the biosphere. This model, which extends recent developments47

in systems biology (Maus et al., 2011) is intended to integrate through all life over its entire history.48

Biologists know that information is crucial to life, pointing to its role in DNA for maintaining the design49

of organisms over repeated generations and an understanding of information in protein structure has a long50

history (see e.g. Yockey et al., 1958). A cybernetic view goes further to claim that information processing,51

carried out in the medium of biological chemistry, is what life actually is. By information processing we52

mean any logical combination of information having the result of producing information and we shorten53

this to ‘computation’. The idea that ‘living is computing’, pioneered by theorists such as Galtin (1972) has54

been popularised by Bray (1995, 2009), but so far, it has been contained within cellular biochemistry (with55

computation by neural networks the obvious exception). Our aim is to show how well the whole of life can56
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be viewed in this way as an integrated information processing system: all cells working together. This view57

seamlessly connects with the concept of information as one of three elemental components of existence58

(with space/time and matter/energy) which has grown within physics over the past several decades, accom-59

panied by a new philosophical position which places information at the core of determining reality (termed60

‘Informational Structural Realism’ by Floridi (2003)). Every aspect of life may be regarded as a product and61

elaboration of the physical world, clearly made of the same matter and energy, ordered in space and time as62

is every physical system. What makes life special is not the material brought together to take part in living,63

it is the functional information that orders matter into physical structures and directs intricate processes64

into self-maintaining and reproducing complexes. In the information model of life, this definitive process65

(termed autopoiesis by Maturana and Varela (1980) consists of a system of structural elements continually66

replacing themselves to maintain the living system by following a program of instructions that both makes67

their information-rich structure and is instantiated within it. Significantly, this fundamental feature of life is68

true at every organizational scale, not only at the cellular level.69

2 Information Concepts70

According to the ‘diaphoric definition of data’ (Floridi, 2003, 2005), a binary bit (the unit of information)71

is a single difference. For example, a digital monochrome image of k-pixels instantiates no more than72

k − 1 differences. When the image carries a meaningful picture, it instantiates fewer than the maximum73

number of differences, so can be compressed by recording only the differences where black changes to74

white. The maximally compressed image instantiates k− n bits (n ≥ 1) and this is termed the Algorithmic75

Information Content (AIC) (Chaitin, 1990). The same applies not just to representations, such as images,76

but to real physical objects: a compressible pattern of differences makes an object what it is. This refers77

not to a description, but to the physical object itself, giving a definition of physical information as a pattern78

of difference: the algorithmic information embodied by an object so as to give it form. Information in this79

sense, selects the elementary particles of the object and specifies the locations of these in space and time80

(under quantum-theoretic constraints). The minimum description of the object is the AIC embodied in both81

this physical configuration of particles and the nature of each (Pauli’s exclusion principle ensures these82

are different). On a technical note, AIC is known not to be strictly computable (Li and Vitányi, 2008), but83

an effective substitute is available in the Computable Information Content for empirical studies needing to84

compute it (see e.g. Menconi, 2005).85
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For most practical purposes, in describing an object, we would consider higher levels of abstraction,86

such as a pattern of atoms, molecules, cells, tissues, or components, etc.. Again, for most practical purposes,87

we are concerned not with the total AIC instantiated in an object, but with the functional information content88

(FIC), which is the part of AIC which can cause a persistent change of information in any part of the system.89

As an illustration, two seemingly identical metal keys will be different in detail (at the small scale), but may90

both function to open the same lock: their functional information defines their shape as fitting the lock.91

This is obviously pertinent to biology through the lock and key analogy of messenger molecules, but also92

describes functional equivalence among all kinds of biological molecules; among cells of the same type and93

state in the body; and among organisms of the same function in an ecosystem. FIC can be quantified, as94

demonstrated at the nucleotide level by Jiang and Xu (2010), who calculated it as the minimal amount of95

genomic information needed to construct a particular organism. We hope to apply this idea to structures of96

biological information, other than the genetic.97

In the field of Biosemiotics, pieces of functional information are regarded as symbols (see Favareau,98

2009), but we wish to focus on the functioning of information, rather than its communication. For this,99

we take the idea of function from Szostak (2003), seeing it as what makes systems, including biological100

ones, operate, in the sense of an operational explanation of function (Neander, 2011). The definition of101

‘function’ has been debated among philosophers for several decades and deserves some attention here.102

Cummins (1975) proposed that function is an objective account of the contribution of a system component103

to the ‘capacity’ of the system. Crucially, for Cummins, the capacity (meaning capability) of a system104

is explained in terms of the capacities of the components it contains, and how they are organised. This105

concept explicitly matches the understanding that functional information is to be found in the component106

parts and the way they are organised into a whole. But it has been criticised, especially for its permitting107

what appear to be unintended consequences as functions (a frequently cited example being that dirt in a108

pipe may ‘function’ as a valve (Griffiths, 1993)). One of the solutions to this, at least for organisms, is to109

recognise that natural selection tends to eliminate potential functions of components if they do not contribute110

to the biological fitness of the system of which they are a part. This qualification was taken up by Neander111

(1991), by developing a biologically-based etiological theory. Whilst appealing, this cannot be used for all112

biological systems, such as ecological communities, for which evolution by natural selection has not been113

established, so to be general, we are forced back to the systemic theories of function. However, Darwin’s114

theory is a special case of a more general principle of selection in which the attribute of persistence is the115

superset of biological fitness (e.g. Kauffman, 1993). Thus we tentatively offer a definition of function that116
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is systemic and in the spirit of established etiological definitions, but not reliant on Darwin’s theory. It is117

that any attribute A of a component C of a system S that causes an effect E such that S persists longer or in118

a wider range of conditions than without it, is a functional attribute of C. Then the functional information119

instantiated by C is that which establishes A, leading to the persistence in form of S, hence the persistence120

of information instantiated by S.121

Szostak’s (2003) mathematically amenable definition allows for a quantification of the effectiveness122

with which information enables a system to perform non-random actions; at least one of which will be123

self-replication. From here on, we shall use the general term ‘effective information’ for that which causes124

a persistent change, so has an effect in the wider system and reserve the term ‘functional information’ for125

effective information which plays a role in supporting life. We note that at the specifically nucleotide level,126

since evolution selects for function, non-functional information will be lost from biological systems over127

evolutionary time (this was demonstrated by Schneider’s (2000) ‘evolutionary program’). However, non-128

functional information is continually introduced by random processes, especially at higher (e.g. ecological)129

levels, so non-functional ‘noise’ may be expected and should be discounted in the quantification of FIC.130

We take as axiomatic that information is instantiated in matter through the particular arrangement of131

its components in space and time. This arrangement defines a unique relationship among the components,132

which can only instantiate information if it is stable and therefore persists as a configuration in space over133

a line in time. When two or more such configurations are brought into association, there is a combined134

arrangement, which if persistent, also instantiates information: that of both components plus that of their135

association. The Shannon information (Shannon, 1948) of the combined configuration is given by the prod-136

uct of probabilities of each component configuration (less any mutual information). Thus the ‘surprise’ in137

finding this new whole is in general greater than that for each of its component parts. Nested construc-138

tion of increasingly complicated configurations of matter may proceed this way and thereby constitute an139

increase in information content in the Shannon sense (Shannon, 1948). Most significantly, when configura-140

tions combine into stable forms, they do so by presenting context for one another: the information of each141

is functional information for the other, enabling greater function than that of the sum of parts.142

The functional meaning of information was defined conceptually by MacKay (1969) who referred to143

information as “a distinction that makes a difference” and later Bateson (1972) more famously called in-144

formation “a difference that makes a difference”, this idea was then taken up by Hopfield (1994). In this145

interpretation, information is defined through its interaction with something (including other information)146

to create a non-random effect, hence it is context dependent. Bates (2005), quoting earlier works, defines147
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information as: “the pattern of organization of matter and energy". This definition peculiarly addresses ef-148

fective information. Patterns of organization are the alternative to randomness: patterns show either order149

(characterised by symmetry) or complexity (broken symmetry). Schrödinger (1944) realised that symmet-150

rical order was insufficient to account for the genetic information coding life, concluding that it must be in151

some aperiodic (non-symmetrical) molecule (well before the discovery of DNA). The required organized152

aperiodicity is commonly known as ‘complexity’; a defining characteristic of which is a high capacity for153

effective information. Adami et al. (2000) subsequently showed how all biological systems are complex154

systems in this scientific sense.155

These concepts are brought together in Figure 1 which shows three levels of information concept in the156

formation of life. On level 1, physical information is understood as the result of an improbable (following157

Shannon’s insight) and persistent configuration of energy and/or matter in space and time. In level 2, ef-158

fective information is defined through consequence: a contextual relation is made among at least two such159

configurations (now considered as information and termed ‘infons’). This synthesis through mutual context160

is exemplified by a lock and key enzyme interaction. Level 3 takes this further to capture the idea that a161

large number of contextual interactions structure an assembly of infons into a complex system; exempli-162

fied by a molecular network inside a cell. Not shown is the hierarchical concept that such systems can be163

the component parts of super-systems, enabling an unbounded construction of nested complexity, in which164

information at higher levels, but not present at lower levels, can be defined and measured as emergent (Ger-165

shenson and Fernández, 2012). That is the way life appears under observation, exemplified by the notional166

hierarchy in figure 2 and table 1.167
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Fig. 1 Three levels of information concept explained in the text: at level 1, information is a pattern of difference; at level 2, information
becomes effective through context and at level 3, ‘packages’ of effective information combine, affecting one another to form a complex
system that computes.

2.1 Order from disorder: self-assembling structures168

According to statistical mechanics, the organization of a system is the result of filtering, i.e. selecting a169

particular configuration of system component states from all possible configurations and this filtering is170

equivalent to investing the system with information, in the Shannon sense (Shannon, 1948) of reducing the171

probability of its configuration. When the resulting organization causes sustainable self-assembly, using172

active filtration from the wider environment, the system may be said to live.173

It is most parsimonious to assume that the components of matter needed to constitute living organisms174

were originally distributed in perfect randomness (disorder). Apparently, life alone creates life, but before175

it appeared for the first time, individually persistent (non-transitory) stages of ordering among collections176

of molecular components must have occurred. It is broadly understood that this develops through the spon-177

taneous emergence of ‘order out of chaos’ (von Foerster, 1960; Prigogine and Stengers, 1984; Kauffman,178
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1993)—in which chaos then referred to disordered randomness. This natural evolutionary phenomenon,179

which obeys the second law of thermodynamics, is very general. It amounts to the selection of more stable180

configurations from a set of random configurations, simply by virtue of their stability conferring greater per-181

sistence. Darwin’s evolution by natural selection is a particular instance of this process, which also applies182

to resonance phenomena and crystal formation.183

Life orders matter, but differs from a crystal in the following critical respects: (a) life is a dynamic184

pattern not a static one; (b) it is not regular, but rather is complex, meaning that it cannot be summarized in185

a short piece of information and (c) it manipulates its environment so as to make its persistence more likely.186

The vortex (e.g. a whirlpool) is an often cited example of a non-living system which displays some of these187

properties. It maintains itself as a dynamic pattern of matter, even though its constituent parts are constantly188

changing: molecules which pass through in a moment are replaced by others, but the pattern and therefore189

the structure-forming information is maintained. This is an example of a ‘dissipative structure’ defined190

and recognized as self-organizing by Prigogine (1977). By continually exchanging matter and energy with191

their environment, these dynamic structures are able to continually ‘dissipate’ entropy, with the effect of192

concentrating information. This information is instantiated in the form of the structure. Crucially the essence193

of these dissipative systems is organizational information, not substance, and the information they maintain194

has the special property of being that which is necessary for the self-maintenance.195

Given the required material components and thermodynamic conditions, we see that information in196

the form of a pattern in matter can emerge spontaneously and maintain itself as long as these conditions197

allow. The next step is to ask if it can also create the components and maintain the conditions it needs to198

do this in a changing environment. If any pattern can achieve that feat, then it will be able to reproduce199

and ensure its persistence far longer than thermodynamics would otherwise allow. The ability of a system200

(any arrangement of matter) to remake itself is termed autopoiesis and this has been identified as one of201

the two necessary capabilities of anything living (Maturana and Varela, 1980). The other is cognition, more202

precisely, the detection and selection of particular elements from an environment of many random elements,203

which is a kind of information processing. Bitbol and Luisi (2004) showed that autopoiesis and cognition204

are separately necessary conditions for life, not inseparably linked as apparently first thought by Maturana205

and Varela (1980). They illustrated their point with reference to the autopoietic fatty acid cells, which Zepik206

et al. (2001) showed to achieve reproduction and self-maintenance by homeostatic processes autonomously207

generated from within. From this work, it became clear that for a system to live, it must have at least the208

following three properties: autopoiesis, cognition and an unbroken boundary to define its limits (Bitbol and209
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Luisi, 2004); this latter stops the ingredients of life from diffusing apart, rendering life’s chemical reactions210

too rare to work as a whole. In practice, all known living systems are cellular1 and indeed, the cell tegument211

has never been broken since the beginning of life—it has only been divided by repeated fission. Division212

among organisms is just an elaboration of division among cells. In this sense all life from its beginning,213

is unified as a set of cells, related through replication; all creating order from disorder, by cognition and214

autopoiesis.215

The result of this long history of accumulating functional information in a population of diverging cell216

lines is illustrated in Figure 2 where the major developments are illustrated. By specializing into specific217

types, cells have found ways to more effectively live: colonies of specialist cells forming into the distinct218

tissues of separate organisms, organized into ecological communities, interacting, to the point of regulating219

the earth’s geochemistry through a homeostatic network. All of this amounts to information processing—220

selecting molecules from the environment, ordering matter and controlling flows of matter and energy. The221

information needed to perform these functions is found distributed among the molecules within every cell:222

not just in nucleotides, but in all the proteins and messenger molecules, their interactions and locations in223

space. However, seeing life as a whole in space and time, from the first single cell to all extant life, implies224

an integrated system, for which hierarchical levels represent merely observed abstractions of organisational225

structure (see Salthe, 1985). Considering the whole living system from notional levels of biochemistry at the226

bottom to global ecosystem at the top, we may regard all but one of the levels in table 1 to be a model, the227

single exception being organisation into cells. Hierarchy theory recognises constraints imposed by higher228

levels on the lower, but also the constraint of possibilities from lower levels upwards. We understand the229

need for bounded cells as one of those possibility constraints and therefore see cells as the one exception -230

they are not merely a model level but one in the reality of life’s organisation.231

2.2 Biological systems as effective information232

It is evident that the minimum functional information needed to constitute life is large (the smallest non-233

virus functional information content calculated so far is 2.86.106 bits for Holarctica (Jiang and Xu, 2010)).234

By current consensus, life emerged as an entropy-dissipating pattern which created and maintained a bound-235

ary through which trapped molecules were able to selectively interact with the wider environment (Mo-236

rowitz, 1992; Smith and Morowitz, 2004). This cognitively filtering system also reproduced itself by growth237

and fission and all extant life followed via evolution (Robertson and Joyce, 2010). The resulting proto-cell238

1 Though some biologists may include viruses.
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was a complex dynamic system in which information was held, not just in the component molecules, but239

also in the interactions among them. These interactions instantiated functional information because the240

molecules gave context to each other, thereby filtering out specifically functional interactions from the241

whole range of possibilities.242

The cytoplasmic contents of cells are spatially structured so that the time and place of interaction is a243

necessary determinant of their effect. Because molecular components are distributed in a specific spatial244

pattern, their collective behavior is extended to form regions of coordinated, but different action over space.245

This instantiates functional information in spatial relations so that simple unitary systems (e.g. enzyme in-246

teractions) combine to exhibit complex behaviors which appear to be the product of more complicated com-247

ponents. The apparently spontaneous emergence of new information (Gershenson and Fernández, 2012), is248

in fact the revelation of that spatio-temporal information already present in the distribution of components249

and the network of signaling paths among them (a phenomenon first described by Turing, 1952). Any250

spatio-temporal information (coding the positions of system elements in time and space) that contributes to251

the emergent behaviors of the whole system, is effective information, and in life this is maintained by au-252

topoiesis. When a more complicated system is created from simple units in this way, it results in a new unit,253

the combination of these being the next tier in an hierarchy of complexity. It is by this nested hierarchical254

construction that the enormously complex machinery of life is brought into being.255

Information is therefore not just stored in nucleotides: it is the whole biological system that embodies256

effective information, hence biocomplexity as a whole is the storage of effective information in living na-257

ture. Valentine (2003a) realised this and emphasised that biological complexity exists as a set of hierarchical258

levels, as we illustrate in table 1 (adapted from Farnsworth et al. (2012)). Spontaneous creation of effec-259

tive information from complex order is a signature property of such hierarchies: every level spontaneously260

emerges from the one below (Adami et al., 2000; Lorenz et al., 2011) - all the way up to global ecosystems.261

For this reason, even a complete description of genetic information fails to account for the full comple-262

ment of effective information in life, which is why seed-banks and zoos are no substitute for community263

conservation, as noted intuitively by Lee (2004) and Cowling et al. (2004). Indeed, ‘living information’ is264

only fully instantiated in dynamic, active systems capable of flexibly responding to environmental condi-265

tions. A common example is the gene-regulatory network, which apparently extracts maximum autopoietic266

complexity by functioning near criticality (Balleza et al., 2008), where information content is maximised267

(Gershenson and Fernández, 2012).268
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2.3 Quantifying Functional Information269

Farnsworth et al. (2012) classified the total information content of any system into two distinct components:270

Itot = IF + IR, where IF is the functional information and IR is the random information. Each of these271

terms can be quantified by the Algorithmic Information Content (Chaitin, 1990) if the term can be isolated.272

IF could, in principle, be quantified by the ‘Effective Complexity’ (Gell-Mann and Lloyd, 1996, 2003) ,273

defined as the minimum description length of regularities, but only given prior knowledge about the regu-274

larities (see McAllister, 2003, for an expansion of this criticism). To describe life as information, we need275

a way to identify IF without such prior knowledge, recognising that effect only results from the interaction276

of information and its context. In the special case of genomes, this is relatively trivial since almost all the277

information present is functional (Schneider, 2000). For quantification, Jiang and Xu (2010) defined ‘ef-278

fective information’ as that part of the genome which is the minimum needed to reconstruct the organism.279

This meant estimating the functional (coding) fraction of the genome and (manually) compressing it to280

form the equivalent Algorithmic Information Content. In an application of Boltzmann’s entropy concept281

at the genetic level, Szostak (2003) defined ’functional information’, in terms of a gene string, as − log2282

of the probability that a random sequence will “encode a molecule with greater than any given degree of283

function” - in other words a design brief, without implying a designer. In the case of genes, this ‘function’284

may be thought of as the biochemical activity (for example a digestive enzyme’s catalytic rate) of whatever285

molecule is produced from reading the nucleotide sequence. This design-brief concept was developed to286

the ecosystem level of organisation by Farnsworth et al. (2012), who interpreted it as a set of ecological287

functions and related functioning to the information content of food-web networks.288

3 The natural history of information processing289

We have argued that life is a dynamic process of filtering and communicating information. The processing290

of information (computation) occurs in all cases of changing, combining and directing information. Thus291

computation is a natural, continuous and ubiquitous process (see Denning (2007)). However, it is impor-292

tant to distinguish between (a) universal computing, which can represent any computation in symbols that293

may be ’programmed’ and (b) fixed computing in which the hardware and software are interdependent,294

so that only a narrow range of computational tasks may be performed (this point is discussed by Hopfield295

(1994)). Life is very much in the latter category (though since the brain is one of its products, this is not296

universally the case). Complex system computation is now a well established model in behavioral ecol-297
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ogy, describing many aspects of social organization (reviewed by Camazine et al. 2001). Other kinds of298

computation performed by life include information replication, ordering and re-ordering of form and cy-299

bernetic system control, each of which will be briefly illustrated below. In each case, computation occurs300

on a distributed network (Gershenson, 2010), rather than through the linear Von-Neumann architecture of301

the familiar digital computer. Whether looking at molecular networks or ecological communities, we see302

that natural computation is composed of cybernetic feedback loops arranged functionally so that the system303

gains in persistence. That these loops exist is not a surprise, since any random interconnection of quantities304

may contain loops and many physical processes do. As control circuits they may generate positive feedback,305

often leading to quick destruction, or negative feedback leading to stability, and hence more likely to persist306

in their changing environment. In fact, since control of this kind enhances persistence, natural selection307

favours cybernetic systems (with negative feedback) above others and we may find this kind of computa-308

tion practically inevitable. However, a network solely composed of negative feedback fixes on a particular309

equilibrium, so may be insufficiently flexible to perform the processes of life (Kauffman, 1993). Since a310

mix of positive and negative feedback loops can create a dynamic and adaptable system of ‘state-cycles’ in311

the narrow ‘critical’ regime between catastrophe and order (exemplified by random Boolean networks with312

high link densities) this has been proposed as an essential feature of living systems by Kauffman (1993)313

and we now look for evidence of these in significant developments of biological organisation (Figure 2).314

3.1 Computing through cell-signaling networks315

If living is the self-sustaining coordination of chemical reactions, does this suggest a coordinating manager?316

The nucleus was once thought to be the ‘command centre’ of the eukaryotic cell, but observations of cells317

behaving normally for months after enucleation show that the information processing needed for most318

activities is cytoplasmic (Goldman et al., 1973). It would be better to think of the nucleus as the ‘hard319

disk’ of the cell, since here (for the human) the ‘blueprints’ for at least 47 thousand different proteins320

(Orchard et al., 2005) are stored and transcribed, together with editable instructions about when to make321

them. The ‘algorithms of living’ are run on these proteins which act in ways analogous to transistors and322

other electronic components, in complex networks, as described by Butler et al. (1998).323

The model of cellular information processing as analogue computation (e.g. Rodbell (1995)) was in-324

spired by the cybernetic theory of Norbert Wiener (1948). In this model, external chemical messages (first325

messengers) are first ‘discriminated’ (by the receptor) then ‘transduced’ (by a G protein) and finally ampli-326

fied (by an effector enzyme) to produce an intracellular signal (the second messenger)—a sequence that can327
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Ecological Networks

Multicellular organisms

Colony forming cells

Eukariotic cells

First true cells

Proto-cells

Biomolecules

Molecules organise into auto-catalytic cycles.

Development of tegument, division and reproduction.

Organised internal complexity and nucleotides develop.

 Internal structures with differentiated functions; nuclear mitosis.

Inter-cell signalling and differentiation.

Cell specialisation turns to obligate symbiosis; organisation of body-plan.

Trophic levels and cybernetic control systems operate through population dynamics.

Fig. 2 Hierarchical self-assembly of complex systems: the increase in computational complexity through the history of life on earth,
often associated with a major transition e.g. from prokaryotic to eukaryotic life-forms, or the development of cell-signalling networks
or ecological networks. Note that concentric rings indicate expansion of complexity, rather than a chronological sequence: all inner
layers exist concurrently at each level.

be summarized as perception. This second signal typically initiates a complex sequence of interconnected328

changes which may alter the internal chemistry of the cell, change the response to other first messengers,329

and even selectively alter gene expression (Cairns et al., 1988). Such cascades of molecular response form330

dynamic networks that carry and process information (Lehn, 1990), analogous to artificial neural networks.331

Chemical switches are implemented by the allostery of proteins, especially enzymes, acting as ‘transis-332

tors’ in the network circuitry (Bray, 1995). Furthermore, activated proteins do not simply diffuse to collide333

with their targets. Cytoplasm is a well organized and densely crowded environment in which the reaction334

cascades are localized by ‘scaffold’ proteins, reminiscent of the electronic circuit board. For example, the335

protein kinase enzyme, type II PKA may be fixed to either the plasma membrane, the cytoskeleton, se-336

cretory granules, or the nuclear membrane by anchoring proteins (Scott and Carr, 1992). The effect is not337

only to position this signaling protein close to its intended target but also to determine the local molecular338

environment (context) which may profoundly influence the effect. Such protein networks are built and re-339
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paired following the DNA blueprint, which as we have just noted, may itself be altered by the cytoplasmic340

computation. Thus, proteins dynamically send, receive and respond to informational signals in complex341

and dynamically changing networks of both negative and positive feedback, which, collectively interacting342

with stored DNA-information, form the behavior of the cell and this is readily interpreted as molecular343

computation.344

3.2 Replicating information345

Biological reproduction is an information transfer (communication) phenomenon, from parent(s) as the346

transmitter to daughter(s) as the receiver. This biological communication requires a high standard of ac-347

curacy, since the information being transmitted is very nearly all functional (Schneider, 2000). Given this348

view of reproduction as efficient semantic communication, it was a surprise to realise that the length of349

the nuclear genome bears no relation to organism complexity (Gregory, 2001; Valentine, 2003a). Since the350

complexity of a system can be defined as the minimum amount of information needed to describe (or repro-351

duce) it, one possible reason is that species differ in the amount of error-mitigating repetition their genomes352

carry. As well as this, the DNA of almost all organisms harbours a zoo of information parasites (selfish DNA353

- Orgel and Crick (1980)) and their remnants, making up a large part of what was historically referred to354

as ‘junk DNA’ when its function was unknown. Transposable elements form the majority of this repetitive355

information (Wessler, 2006). It is now thought that many of these ‘transposons’ originated as endogenised356

retro-viruses (Bowen and Jordan, 2002): parasites that have been co-opted into functional symbiosis under357

regulation by the host (Veitia and Bottani, 2009). This legacy of non-host information accounts for a large358

part of the huge variation in genome size among eukaryotes, where multiple copies of information parasites359

are found. However, the relationship between nuclear genome size and organism complexity is still an open360

question.361

Given our understanding of emergence and the formation of functional information from mutual context,362

we can see that not all of the functional information is to be found in nuclear DNA. So whilst physically, it363

is the genes that are replicated in biological reproduction, context-dependent relationships among them con-364

stitutes functional information that is carried along with the replication. Gene regulatory networks (GRNs)365

(Davidson and Levin, 2005) are the most significant information complexes to extend beyond nuclear DNA366

and are composed of context-dependent relationships among infons, rich in both negative and positive feed-367

back. Again, these networks are readily modeled as computational systems (Kravchenko-Balasha et al.,368
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2012) and their role in determining body-plan through epigenetic phenomena points to a possible correla-369

tion between GRN complexity (hence information content) and organism complexity.370

3.3 The eukaryotic revolution371

Following pioneering work by Margulis (1970), endosymbiosis is the front-running theory explaining the372

origin of eukaryotic cells and this well illustrates the increase of function brought about through the creation373

of mutual context among infons (level 2 in Figure 1). The advantage of eukarotic cells over prokaryotic is374

the specialisation of metabolic, anabolic and reproductive machinery. The component parts collectively375

become more efficient by (a) individually concentrating on a smaller task and (b) sharing the products.376

The fundamental reason this narrowing of tasks improves effectiveness is that it reduces the information377

requirement for performing all necessary tasks. If we think of a cell as a machine performing n processes;378

it needs storage capacity enough to instantiate the algorithms for all n tasks. prokaryotic cells have rather379

limited storage capacity (determined by their AIC), so cannot afford a very sophisticated algorithm for380

every task they have to perform - they are limited in effectiveness by their information capacity limit.381

When a cell incorporates others, it increases its storage capacity and permits a distribution of tasks among382

specialist components, each of which can devote the whole of their limited storage capacity to carrying a383

sophisticated and efficient algorithm for a single task. It is also necessary to include the communications384

and sharing among the specialist components, so some algorithm space is devoted to this. The exchange385

among individual components forms a network of control computation, which on a larger scale constitutes386

a complex system (level 3 in Figure 1).387

3.4 Cell types and body-plan complexity388

Information’s role in ordering of form is most apparent in the building of multi-cellular organisms. Cells389

come in a large variety of forms, with hierarchical morphotype structure and developmental lineages (Valen-390

tine, 2003a). The number of distinct cell types in a single organism is taken as an indicator of its complex-391

ity (Carroll, 2001) and varies among metazoan phyla from 3 (Myxozoa) to 210 (human) having steadily392

increased through evolutionary time (Valentine et al., 1994). This indicates a gradual accumulation of bio-393

logical complexity, and therefore functional information, as life-forms have radiated and cell specialisation394

has apparently increased. Despite that, Hinegardner and Engelberg (1983) concluded that “evolution since395

the Cambrian appears to have involved few major increases in biological complexity", as Valentine (1994)396
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argued, the basic body-plans of all extant phyla were established by the end of the Cambrian explosion397

(520 My ago). The apparent contradiction may be explained by proliferating patterns of gene expression,398

rather than the creation of new genes; this being one of the central hypotheses of evolutionary development399

biology (see Valentine, 2003b). Such proliferation of patterns and the consequent radiation of organism-400

forms is the result of ordering and re-ordering of functional information. Different cell-types are created by401

regulating the expression of different genes in the total genome—simpler organisms suppress the expres-402

sion of a higher proportion of their developmental genes than do complex ones (Davidson, 2001). Thus, the403

morphological complexity of an organism is determined by the regulatory machinery which selects genetic404

expression during the development of an organism. The number of cell types is one computed ‘output’ of405

gene regulatory networks and gives a very rough indication of functional information content. A trend in406

modeling body-plan regulatory networks, represents them in a way analogous to artificial neural networks407

(Geard and Wiles, 2005), clearly interpreting morphogenesis as computation. This suggests a means of408

quantifying the functional information of body plans by experimentally (in silico) examining variants of409

formative gene-networks and recording the resulting morphometric diversity.410

3.5 Cybernetic computation by ecological communities411

Darwin’s metaphor of a ‘tangled bank’ suggests a bewildering complex of interactions among whole or-412

ganisms (Montoya et al., 2006), but natural computation is rarely, if ever, explicit in ecological models.413

Information processing in ecological communities is less clear than in cells and organisms because ecosys-414

tems usually lack obvious boundaries and their functions are usually considered, not at the system level, but415

at the population level, where cybernetic control is not apparent. However, some recent developments pave416

the way for this to change; both in describing the information content of communities and in understanding417

them as self-regulating complex systems.418

The study of biodiversity provides a starting point to finding the functional information content at the419

ecological level. Using the idea that difference is the basis of information (Floridi, 2005), diversity (which420

by definition counts total difference) becomes a measure of information content. Traditionally, biodiversity421

describes the number of different species and perhaps the evenness of their abundances in an ecological422

assembly, using metrics inspired by Shannon’s information theory (see Magurran, 2004). More recently,423

broader definitions recognize diversity at every level in the biological hierarchy (table 1), and ecologists may424

now refer to genetic and functional diversity as equally necessary for specifying biodiversity (Lyashevska425

and Farnsworth, 2012). Ecological communities can be regarded as the vaults of information capital, in426
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the form of molecular structures; networks and pathways; cell types; tissues and organs, whole organisms427

and community interactions (Farnsworth et al., 2012). However, ecologists still refer to organizational scale428

through informal terms: for example ‘alpha’ and ‘beta’ diversity, which are arbitrarily defined phenomena429

of classification (Tuomisto, 2010) over probability distributions (McGill, 2011; Nekola and White, 1999).430

Whilst hierarchical nesting of complex systems is explicitly recognised by multi-level modelling in sub-431

cellular biology, the strength of formal description this provides has yet to enter ecology (see Faeder, 2011).432

Descriptive approaches can be developed into conceptual models by changing the focus towards the433

network through which organisms interact (as in Norton and Ulanowicz, 1992). The basic components for434

such models are available in the special case of predator-prey interactions (e.g. Dunne et al., 2002) (though435

models of other material and informational – e.g. genetic – flows are less well developed). Given a network436

description such as a food-web, Farnsworth et al. (2012) showed how the functional information approach437

may be applied at the ecological level. They systematically dismantled a network model of the Northeast438

Atlantic fish community, at each stage measuring its productivity, to find a relationship between complex-439

ity and function, which provided a measure of the marginal change in function with network (algorith-440

mic) information content. Food-webs are but a partial description of ecosystems, which necessarily include441

chemical, energy and information flows. Being relatively simpler, microbial networks are more amenable442

to this fuller description. The recent development of functional and genetic network models in microbial443

ecology (e.g. Zhou et al., 2010) gives us a stepping stone between sub-cellular networks and community444

level computation. Significantly, microbial colonies preceded the close association of eukaryotic cells to445

form multi-cellular organisms Lepot et al. (2008), yet specialisations among microbe species imply the446

same need for self-regulating interactions as is found in organismal physiology. By definition, an isolated447

microbial community must be autopoietic and as specialisation among constituent species develops, so must448

flows of coordinating information work to compute the community, via complex-system emergence.449

3.6 Information processing as an integrated whole.450

The computation performed by ecological networks is both broader and narrower than that of a Turing ma-451

chine (a system following a sequence of logical operations defined by Turing, 1936). It is broader because452

inputs are processed continuously, the outputs are produced continuously and because processing is sen-453

sitive to the environment (in a Turing machine, processing is blind to all but the initial inputs until a halt454

condition is reached, releasing the output). It is narrower because the computation is equivalent to running455

a particular model: a model of the system under control, following the injunction of Conant and Ashby456
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(1970), that “Every good regulator of a system must be a model of that system”. Interactions between the457

biotic and abiotic spheres of the ecosystem are regulated by controls on chemical flows, driven by the pro-458

cessing of materials by life in aggregate: the sum of individual selection and processing actions amounts459

to a regulation of the whole ecosystem. Including the flows of nutrients such as nitrogen and phosphorus460

in ecological network analysis (e.g. Ulanowicz and Baird, 1999) takes us a step closer to the biochemical461

analogy of within-cell computation (Ulanowicz, 1980). Since molecules continually flow through ecosys-462

tems, just as they do in the cell, we can identify the process of constant renewal of ecosystem structure (the463

network) as autopoiesis, this time referring to all life in aggregate. The phenomenon of constant renewal by464

recycling material, driven by transforming high to low entropy energy, accumulated over all life on earth,465

is the foundation of the Gaia hypothesis (Lovelock and Margulis, 1974). The total of global ecological pro-466

cesses may be interpreted as a network computer, whose input is the physical and chemical environment467

of the planet and the output is a computed adjustment of these to maintain equilibrium. Seen this way, life468

is a computer running a model of itself in order to control its interior state so as to perpetuate itself in469

a changeable environment. This view, which goes beyond cybernetic self-regulation to reveal autopoietic470

computation, is closely allied to a growing thermodynamic understanding of living processes in which en-471

ergy accountancy is integrated with informational interpretations (e.g. in Smith, 2008). For example, the472

accumulation of hierarchical complexity, so characteristic of life, has been demonstrated to follow from473

thermodynamic efficiency (Wicken, 1979; Annila and Annila, 2008; Annila and Kuismanen, 2009) as has474

the tendency for hierarchical complex structures to regulate their internal and external environments through475

information processing (Kaila and Annila, 2008; Karnani and Annila, 2009).476

4 Implications477

The information perspective shows life to be (a) continuous with the abiotic universe and (b) the conse-478

quence of a spontaneous increase in complexity through repeated combination of formative patterns such479

that they give context and thence function to one-another. Chemistry is the result of this process at the480

atomic scale and life is a branch of chemistry that is especially rich in opportunities for functional combi-481

nations. The processes of life are chemical processes, so our ‘life is information’ remains compatible with482

Kornberg’s ‘life is chemistry’, but goes deeper by highlighting the informational basis of the chemistry of483

life. Our perspective also emphasises the idea that the whole of life at all scales has a role in reproducing484

life. Considering life as information processing (computation) where the subject of computation is life, we485

are faced with a ‘program’ running on itself, the function of which is to output itself. Such recursion is486
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familiar and much exploited in computer science. It highlights the fact that for life, there is no distinction487

between the ‘machine’ and the program - both are information; they are the same information, ordering and488

re-ordering matter and energy so as to persist. It would not be right to think of life as a biochemical structure489

on which a program is run, because life is the program and the biochemical structure is its embodiment.490

This is why we say that information is not just in DNA, but is in the whole biological system. The idea that491

‘life is information processing’ brings reductionists and synthesists closer together as it shows life to super-492

vene on chemistry strictly according to information content, but to also possess strictly emergent properties493

(at several levels) arising from the functions of the embodied information. Now that functional information494

content can be quantified at every level of life, we anticipate its use in further deepening our understanding495

of life and its place in the physical universe.496

Acknowledgments497

This work was enhanced by very thoughtful and creative reviews by anonymous referees. It was supported498

by a Science Technology Research and Innovation for the Environment grant from the Environmental Pro-499

tection Agency of the Republic of Ireland: 2007-PhD-SD-3. C.G. was partially supported by SNI member-500

ship 47907 of CONACyT, Mexico.501



20

References502

Adami, C., Ofria, C., and Collier, T. C. (2000). Evolution of biological complexity. Proc Natl Acad Sci U503

S A, 97(9):4463–4468.504

Annila, A. and Annila, E. (2008). Why did life emerge? International Journal of Astrobiology, 7(3-4):293–505

300.506

Annila, A. and Kuismanen, E. (2009). Natural hierarchy emerges from energy dispersal. Biosystems,507

95(3):227–233.508

Balleza, E., Alvarez-Buylla, E. R., Chaos, A., Kauffman, S., Shmulevich, I., and Aldana, M. (2008). Critical509

dynamics in genetic regulatory networks: Examples from four kingdoms. Plos One, 3(6):e2456.510

Bates, M. (2005). Information and knowledge: an evolutionary framework for information science. Infor-511

mation Research, 10(4):paper 239.512

Bateson, G. (1972). Form, substance, and difference. In Bateson, G., editor, Steps to an Ecology of Mind,513

pages 448–466. University of Chicago Press.514

Bitbol, M. and Luisi, P. (2004). Autopoiesis with or without cognition: defining life at its edge. J Royal Soc515

Interface, 1(1):99–107.516

Bowen, N. and Jordan, I. (2002). Transposable elements and the evolution of eukaryotic complexity. Curr517

Issues Mol Biol, 4:65–76.518

Bray, D. (1995). Protein molecules as computational elements in living cells. Nature, 376(6538):307–312.519

Bray, D. (2009). Wetware: A computer in every living cell. Yale University Press, New Haven, CT. USA.520

Butler, M. H., Paton, R. C., and Leng, P. H. (1998). Information processing in tissues and cells, chapter521

Information processing in computational tissues, pages 177–184. Plenum Press, New York.522

Cairns, J., Overbaugh, J., and Miller, S. (1988). The origin of mutants. Nature, 335:142–145.523

Camazine, S., Deneubourg, J. L., Franks, N., Sneyd, J., Theraulaz, G., and Bonabeau, E. (2001). Self-524

Organization in Biological Systems. Princeton University Press, Princeton, NJ. USA.525

Carroll, S. (2001). Chance and necessity: the evolution of morphological complexity and diversity. Nature,526

409(6823):1102–1109.527

Chaitin, G. (1990). Information, Randomness and Incompleteness - Papers on Algorithmic Information528

Theory, volume 8 of Series in Computer Science. World Scientific, Singapore, 2nd edition.529

Conant, R. and Ashby, W. (1970). Every good regulator of a system must be a model of that system.530

International Journal of Systems Science, 1(2):89–97.531



21

Cowling, R., Knight, A., Faith, D., Ferrier, S., Lombard, A., Driver, A., Rouget, M., Maze, K., and Desmet,532

P. (2004). Nature conservation requires more than a passion for species. Conserv Biol, 18(6):1674–1676.533

Cummins, R. (1975). Functional analysis. J. Philos., 72(20):741–765.534

Curtis, T., Sloan, W., and Scannell, J. (2002). Estimating prokaryotic diversity and its limits. Proc Natl535

Acad Sci U S A, 99(16):10494–10499.536

Davidson, E. H. (2001). Genomic regulatory systems: Development and evolution. Academic Press, San537

Diego, USA.538

Davidson, E. H. and Levin, M. (2005). Gene regulatory networks. Proc Nat Acad Sci USA, 102(14):4935.539

Denning, P. J. (2007). Computing is a natural science. Communications of the ACM, 50(7):13–18.540

Dunne, J., Williams, R., and Martinez, N. (2002). Food-web structure and network theory: The role of541

connectance and size. Proc Natl Acad Sci U S A, 99(20):12917–12922.542

Faeder, J. R. (2011). Toward a comprehensive language for biological systems. BMC Biol, 9:68.543

Farnsworth, K., Lyashevska, O., and Fung, T. (2012). Functional complexity: The source of value in biodi-544

versity. Ecol Complex, 11:46–52.545

Favareau, D., editor (2009). Essential Readings in Biosemiotics: Anthology and Commentary. Springer,546

Berlin.547

Floridi, L. (2003). Information. In Floridi, L., editor, The Blackwell Guide to the Philosophy of Computing548

and Information, pages 40–61. Blackwell Publishing Ltd.549

Floridi, L. (2005). Is semantic information meaningful data? Philosophy and Phenomenological Research,550

70(2):351–370.551

Galtin, L. L. (1972). Information Theory and the Living System. Columbia University Press, New York.552

Geard, N. and Wiles, J. (2005). A gene network model for developing cell lineages. Artif Life, 11:249–267.553

Gell-Mann, M. and Lloyd, S. (1996). Information measures, effective complexity, and total information.554

Complexity, 2(1):44–52.555

Gell-Mann, M. and Lloyd, S. (2003). Effective complexity. In Gell-Mann, M. and Tsallis, C., editors,556

Nonextensive Entropy - Interdisciplinary Applications. Oxford University Press.557

Gershenson, C. (2010). Computing networks: A general framework to contrast neural and swarm cogni-558

tions. Paladyn, Journal of Behavioral Robotics, 1(2):147–153.559

Gershenson, C. and Fernández, N. (2012). Complexity and information: Measuring emergence, self-560

organization, and homeostasis at multiple scales. Complexity, Early View.561



22

Goldman, R., Pollack, R., and Hopkins, N. (1973). Preservation of normal behavior by enucleated cells in562

culture. Proc Nat Acad Sci USA, 70:750–754.563

Gregory, T. (2001). Coincidence, coevolution, or causation? DNA content, cell size, and the C-value564

enigma. Biological Reviews, 76(1):65–101.565

Griffiths, P. E. (1993). Functional analysis and proper functions. British J. Philos. Sci., 44:409–422.566

Hinegardner, R. and Engelberg, J. (1983). Biological complexity. J Theor Biol, 104:7–20.567

Hopfield, J. J. (1994). Physics, computation, and why biology looks so different. J Theor Biol, 171:53–60.568

Jiang, Y. and Xu, C. (2010). The calculation of information and organismal complexity. Biol Direct, 5:59.569

Kaila, V. R. I. and Annila, A. (2008). Natural selection for least action. Proceedings of the Royal Society570

A-Mathematical Physical and Engineering Sciences, 464(2099):3055–3070.571

Karnani, M. and Annila, A. (2009). Gaia again. Biosystems, 95(1):82–87.572

Kauffman, S. A. (1993). Origins of Order: Self-Organization and Selection in Evolution. Oxford University573

Press, Oxford, UK.574

Kohl, P., Crampin, E. J., Quinn, T. A., and Noble, D. (2010). Systems biology: An approach. Clin Pharma-575

col Ther, 88(1):25–33.576

Kornberg, A. (1991). Understanding life as chemistry. Clin Chem, 37(11):1895–1899.577

Kravchenko-Balasha, N., Levitzki, A., Goldstein, A., Rotter, V., Gross, A., Remacle, F., and Levine, R. D.578

(2012). On a fundamental structure of gene networks in living cells. Proc Natl Acad Sci U S A,579

109(12):4702–7.580

Lee, K. (2004). There is biodiversity and biodiversity. In Oksanen, M. and Pietarinen, J., editors, Philosophy581

and Biodiversity, pages 152–171. Cambridge University Press, Cambridge, UK.582

Lehn, J.-M. (1990). Perspectives in supramolecular chemistry—from molecular recognition towards molec-583

ular information processing and self-organization. Angewandte Chemie International Edition in English,584

29(11):1304–1319.585

Lepot, K., Benzerara, K., Brown, G., and P, P. (2008). Microbially influenced formation of 2,724-million-586

year-old stromatolites. Nat. Geosci., 1:118–121.587

Li, M. and Vitányi, P. M. B. (2008). An introduction to Kolmogorov complexity and its applications.588

Springer, 3rd edition.589

Lorenz, D. M., Jeng, A., and Deem, M. W. (2011). The emergence of modularity in biological systems.590

Physics of Life Reviews, 8(2):129 – 160.591



23

Lovelock, J. E. and Margulis, L. (1974). Atmospheric homeostasis by and for the biosphere: The Gaia592

hypothesis. Tellus, 26(1):2–10.593

Lyashevska, O. and Farnsworth, K. D. (2012). How many dimensions of biodiversity do we need? Ecolog-594

ical Indicators, 18:485–492.595

MacKay, D. M. (1969). Information, Mechanism and Meaning. MIT Press, Cambridge, MA, USA.596

Magurran, A. (2004). Measuring Biological Diversity. Blackwell Publishing.597

Margulis, L. (1970). Origin of Eukaryotic Cells. Yale University Press, New Haven, CT. USA.598

Maturana, H. and Varela, F. J. (1980). Autopoiesis and Cognition: the Realization of the Living. D. Reidel599

Publishing Company, Dordrecht, NL. Translation of original: De Maquinas y seres vivos. Universitaria600

Santiago.601

Maus, C., Rybacki, S., and Uhrmacher, A. M. (2011). Rule-based multi-level modeling of cell biological602

systems. BMC Syst Biol, 5:166.603

McAllister, J. (2003). Effective complexity as a measure of information content. Philos Sci, 70(2):302–307.604

McGill, B. J. (2011). Linking biodiversity patterns by autocorrelated random sampling. Am J Bot,605

98(3):481–502.606

Menconi, G. (2005). Sublinear growth of information in dna sequences. Bull. Math. Biol., 67(4):737–759.607

Montoya, J., Pimm, S. L., and Solé, R. V. (2006). Ecological networks and their fragility. Nature,608

442(7100):259–264.609

Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., and Worm, B. (2011). How many species are there610

on earth and in the ocean? PLoS Biol, 9(8):e1001127.611

Morowitz, H. J. (1992). Beginnings of Cellular Life. Yale University Press, New Haven, CT. USA.612

Neander, K. (1991). Functions as selected effects: A conceptual analysts defense. Philos. Sci., 58(2):168–613

184.614

Neander, K. (2011). Routledge Encyclopedia of Philosophy (Online). Routledge.615

Nekola, J. and White, P. (1999). The distance decay of similarity in biogeography and ecology. J Biogeogr,616

26(4):867–878.617

Norton, B. and Ulanowicz, R. (1992). Scale and biodiversity policy - a hierarchical approach. Ambio,618

21(3):244–249.619

Orchard, S., Hermjakob, H., and Apweiler, R. (2005). Annotating the human proteome. Mol Cell Pro-620

teomics, 4(4):435–40.621

Orgel, L. and Crick, F. (1980). Selfish DNA: The ultimate parasite. Nature, 284:604–607.622



24

Prigogine, I. (1977). Self-Organization in Non-Equilibrium Systems. Wiley, New York.623

Prigogine, I. and Stengers, I. (1984). Order out of Chaos: Man’s new dialogue with nature. Flamingo.624

Collins Publishing Group., London.625

Robertson, M. and Joyce, G. (2010). The origins of the rna world. Cold Spring Harbour Perspectives In626

Biology.627

Rodbell, M. (1995). Signal transduction: evolution of an idea. Biosci Rep., 15:117–133.628

Salthe, S. (1985). Evolving Hierarchical Systems: Their Structure and Representation. Columbia University629

Press.630

Schneider, T. D. (2000). Evolution of biological information. Nucleic Acids Res, 28:2794–2799.631

Schrödinger, E. (1944). What is Life? The physical aspects of the living cell.632

http://home.att.net/ p.caimi/schrodinger.html.633

Scott, J. and Carr, W. (1992). Subcellular localization of the type II cAMP-dependent protein kinase.634

Physiology, 7:143–148.635

Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3,4):379–636

423,623–656.637

Smith, E. (2008). Thermodynamics of natural selection i: Energy flow and the limits on organization. J638

Theor Biol, 252(2):185–197.639

Smith, E. and Morowitz, H. J. (2004). Universality in intermediary metabolism. Proc Nat Acad Sci USA,640

101(36):13168–13173.641

Szostak, J. W. (2003). Functional information: Molecular messages. Nature, 423(6941):689–689.642

Tuomisto, H. (2010). A diversity of beta diversities: straightening up a concept gone awry. part 1. defining643

beta diversity as a function of alpha and gamma diversity. Ecography, 33(1):2–22.644

Turing, A. (1936). On computable numbers, with an application to the entscheidungs problem. Proceedings645

of the London Mathematical Society, 42:230–265.646

Turing, A. (1952). The chemical basis for morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci.,647

237:37–72.648

Ulanowicz, R. (1980). An hypothesis on the development of natural communitiesl. J Theor Biol, 85:223–649

245.650

Ulanowicz, R. and Baird, D. (1999). Nutrient controls on ecosystem dynamics: The chesapeake mesohaline651

community. J Mar Syst, 19:159–172.652



25

Valentine, J. (1994). Late precambrian bilaterians: grades and clades. Proc Natl Acad Sci U S A,653

91(15):6751–6757.654

Valentine, J. (2003a). Architectures of biological complexity. Integrative and comparative biology,655

43(1):99–103.656

Valentine, J. (2003b). Cell types, cell type numbers, and body plan complexity. In Hall, B. and Olson, W.,657

editors, Keywords and Concepts in Evolutionary Developmental Biology, pages 35–43. Harvard Univer-658

sity Press, Cambridge, MA, USA.659

Valentine, J., Collins, A., and Meyer, C. (1994). Morphological complexity increase in metazoans. Paleo-660

biology, 20(2):131–142.661

Veitia, R. A. and Bottani, S. (2009). Whole genome duplications and a ‘function’ for junk DNA? Facts and662

hypotheses. Plos ONE, 4(12):e8201.663

von Foerster, H. (1960). On self-organizing systems and their environments. In Yovits, M. and Cameron,664

S., editors, Self-organizing systems. Pergamon Press, Oxford, UK.665

Wessler, S. R. (2006). Transposable elements and the evolution of eukaryotic genomes. Proc Natl Acad Sci666

U S A, 103(47):17600–17601.667

Wicken, J. S. (1979). The generation of complexity in evolution: A thermodynamic and information-668

theoretical discussion. J Theor Biol, 77:349–365.669

Wiener, N. (1948). Cybernetics; or, Control and Communication in the Animal and the Machine. Wiley670

and Sons, New York.671

Yockey, H., Platzman, R., and Quastler, H., editors (1958). Symposium on Information Theory in Biology672

(1956 : Gatlinburg, Tenn.). Pergamon Press, New York.673

Zepik, H., Blochliger, E., and Luisi, P. (2001). A chemical model of homeostasis. Angewandte Chemie-674

International Edition, 40(1):199–202.675

Zhou, J., Deng, Y., Luo, F., He, Z., Tu, Q., and Zhi, X. (2010). Functional molecular ecological networks.676

MBio, 1(4):e00169–00110.677



26

Organization Level Interactions
life as a whole global bio-geochemical networks
ecological communities interspecific material and energy flows
populations - species gene-flow, dispersal, evolution
multi-cellular organisms organism societies + interspecific, e.g. parasitism
tissues, organs and organ systems cellular communication and organ function
cells specialisation and ontogeny: e.g. immune system
sub-cellular structures catabolic autopoietic processes
molecular networks metabolic and information processing
DNA sequences: codons to genes coding and expression control
molecular surfaces lock and key - enzymes

Table 1 A ten-level hierarchy of biocomplexity. Left column names the level of organization and right column gives examples of
the complex interactions and processes that take place at that level, contributing to biocomplexity. Complexity is also added by
interactions among levels, both upwards and downwards, producing feedback circuits. Interactions at every level and among levels
constitute information processing. (adapted from Farnsworth et al. (2012))
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